Do you want to know more about methods in epidemiology but don’t have the time read a bunch of papers on the topic? Do you want to keep current on the latest developments but can’t go back to school for another degree? Do you just want the big picture understanding so you can follow along?
SERious Epi is a podcast from the Society for Epidemiologic Research that I co-host with Dr. Matt Fox from Boston University.
The podcast includes interviews with epidemiologists who are experts on cutting edge and novel methods. In each episode we do a deep dive into a particular method or topic. Our interviews focus on why these methods are so important and how they are currently being used.
The podcast is targeted towards current students and trainees as well as practicing epidemiologists who want to brush up on their epi methods.
Season 1 (2020-2021)
Click on the episode titles below to listen!
1.1. SERious EPI – Introduction
Get to know your hosts, Hailey Banack and Matt Fox!
1.2. The Time is Not on Your Side Episode with Dr. Ellie Murray
Have you ever wondered why it is so important to consider the concept of time in epidemiologic analyses? And, more importantly, what strategies exist to appropriately account for time and time-varying variables? Time dependent confounding? In the first-ever episode of SERious Epidemiology, Dr. Eleanor Murray will be discussing the concept of time in epidemiologic research and explaining different types of time-related bias.
At SER 2019, the Cassel lecture was delivered by Miguel Hernán and Sandro Galea on the topic of reconciling social epidemiology and causal inference. Their talk was turned into a paper in the American Journal of Epidemiology, and in March 2020, was published along with a series of responses by Drs. Enrique Schisterman, Whitney Robinson and Zinzi Bailey, Tyler VanderWeele, and John Jackson and Onyebuchi Arah. In this SERious Epi bonus journal club episode, we had conversation with Dr. John Jackson and Dr. Onyebuchi Arah about their commentary and had the opportunity to ask their thoughts on the other topics published in that issue.
1.3 The Countercultural Counterfactual Episode with Dr. Daniel Westreich
Causal inference and the potential outcomes model are now both commonly taught in graduate programs in epidemiology. However, I think we can all agree that counterfactual thinking can be a bit mind-bending at times and it is really easy to get lost deep in the weeds when trying to think through the potential for unobserved comparison groups or outcomes. In this episode of SERious Epi, we speak to Dr. Daniel Westreich about counterfactuals, the difference between causal inference and causal effect estimation, and assumptions required to estimate causal effects from observational data.
In this journal club episode, we discuss one of our top 10 favourite epidemiology papers: “Does obesity shorten life? The importance of well-defined interventions to answer causal questions” by Miguel Hernán and Sarah Taubman. We talk about the consistency assumption in causal inference, why we think measurement error needs to be added to the list of assumptions for causal inference, and invent a new word (“statisticalize”) to dismiss the notion that fancy methods can always solve our problems.
1.5. Putting the Social Back in Social Epidemiology with Dr. Whitney Robinson
Is all epidemiology social epidemiology? If I am someone who studies cancer, or obesity, or infectious disease, or any other branch of epidemiology, should I be considering topics related to social epidemiology in my own work? In this episode of SERious Epidemiology, Dr. Whitney Robinson joins us to explain key concepts in social epidemiology.
1.6. Questioning the Questions with Maria Glymour
Why is it so important to ask good study questions? Why is it so hard to develop good study questions? Do all study questions need to be directly relevant for public health policy? In this episode of SERious Epidemiology, we talk with Dr. Maria Glymour about what it means to ask a good study question and how we can get better at asking questions that will make a meaningful contribution to public health.
1.7. The Bread and Butter of Bayes with Ghassan Hamra
In this episode we interview Dr. Ghassan Hamra and talk about all things Bayesian. If you’re like us, you have likely been trained in traditional, frequentist approaches to statistics and have always wondered what the big deal is about Bayesian approaches. Well, have no fear, Dr. Hamra is here to explain it all. In this episode we cover a range of topics introducing Bayesian analyses, including how Bayesian and frequentist statistics differ, the concept of integrating a prior into your analyses, and whether Bayesian statistics are really a “subjective” approach (**spoiler alert: they’re not).
1.8. The Discipline Olympics: Epidemiology vs. Public Health with Dr. Laura Rosella
Given the COVID-19 pandemic there is an urgent need for us to better understand how scientific evidence generated in epidemiologic research gets translated into information that can be used to create public health policy. In this episode of SERious Epidemiology, we talk with Dr. Laura Rosella about data driven public health, the role of epidemiology in public health, and more broadly, the importance of knowledge translation for epidemiologists.
1.9. When Epidemiologists and Variables Collide: with Elizabeth Rose Mayeda
In most introductory epidemiology courses, students are taught about three categories of bias: confounding, information bias, and selection bias. On this episode of the podcast, we talk to Dr. Elizabeth Rose Mayeda about where collider stratification bias fits in to the framework of biases in epidemiology. Is collider stratification bias the same as selection bias? Why is collider bias so hard to understand, conceptually and empirically? Does collider stratification bias even matter? Listen in for some great conversation explaining these topics and others.
1.10. Quasi-experimental Studies – A Love Story: With Tarik Benmarhnia
What puts the quasi in quasi-experimental designs? What makes a quasi-experimental study different than a “real” experiment? Ever wondered about the difference between regression discontinuity, difference-in-differences, and synthetic control methods? Dr. Tarik Benmarnhia joins us on this episode of SERious Epidemiology to talk us through a range of quasi-experimental designs. He makes a strong case for why we should integrate these designs in a variety of settings in epidemiology ranging from public health policy to clinical epidemiology
1.11. The need for theory in epidemiology – with Dr. Nancy Krieger
This episode features an interview with Dr. Nancy Krieger, Professor of Social Epidemiology at the T.H. Chan School of Public Health and author of Epidemiology and the People’s Health: Theory and Context. Dr. Krieger discusses the importance of using conceptual frameworks to improve people’s health and the role of population-level determinants of health (including social determinants) in population health research. We discuss a range of topics, including the differences between biomedical and analytics driven approaches to population health research and theory driven research, as well as the importance of descriptive epidemiology.
1.12. Epidemiology podcast crossover
In honor of the Society for Epidemiologic Research 2020 Meeting, the hosts of four epidemiology podcasts came together to record the first ever “crossover event” to talk about their experiences recording our shows and what podcasting can bring to the table for the field of epidemiology. Join the hosts of Epidemiology Counts (Bryan James), SERiousEPi (Matt Fox, Hailey Banack), Casual Inference (Lucy D’Agostino McGowan), and Shiny Epi People (Lisa Bodnar) as they engage in a fun and informative (we hope!) conversation of the burgeoning field of epidemiology podcasting, emceed by Geetika Kalloo.
1.13. It’s all about the instruments: with Sonja Swanson
What are instrumental variables? Should I be using them in my research? And if so, how do I do that? In this episode of SERious Epidemiology, we talk with Dr. Sonja Swanson about what instrumental variables are and what’s so great (and not so great) about them.
1.14. It’s always a competition: Competing Risks with Dr. Bryan Lau
Do you, like us, understand that competing risks are important to account for and yet are not 100% sure exactly what they are and when they matter? Do you stay up at night wondering if competing risks regressions are necessary for valid inference in your study? If so, this episode is for you. Dr. Bryan Lau gives us the details on this important method.
1.15 The pool is big enough for all of us: Representativeness with Dr. Jonathan Jackson
Perhaps the biggest challenge we all face in epidemiologic research is recruitment of study participants. And recruiting a diverse population for our studies that allows for broad generalizability and transportability of effect estimates is something we haven’t done a good enough job of and as a consequence, our work has suffered. While we may think of this as not a methods issue, Dr. Jonathan Jackson helps us understand why representativeness affects or work and how we can do better.
1.16 Finding the Perfect Match Requires Common Support: Matching with Dr. Anusha Vable
Matching is something we learn about in our intro to epidemiology classes and yet we probably spend little time thinking about it after that, we just do it. But when should we match and when does it help us and when does it hurt us? What do we need to consider before we match? Dr. Anusha Vable joins us to help us understand matching in detail.
1.17 Do external validity and transportability confuse the daylights out of you?
Ask yourself these true or false questions:
- Generalizability and transportability and external validity are all the same thing
- Generalizability is a secondary concern to internal validity
- We spend too much time in epi training programs teaching internal validity and not enough teaching external validity
- Worrying about external validity is largely and academic exercise that doesn’t really have much in the way of real-world impact.
In this episode of SERious Epi we discuss these questions and more with Dr. Megha Mehrotra. While internal and external validity are familiar to nearly all epidemiologists, the concept of transportability is less familiar. Listen in to this episode for a clear description of how concepts related to validity, generalizability, and transportability are similar, and different, from each other.
1.18 Lifecourse epidemiology: a melting pot of bias?
The topic of this episode is lifecourse epidemiology, defined by Dr. Paola Gilsanz as the biological, behavioural and social processes that influence an individual’s health outcomes throughout their life. Join us as we discuss models commonly used in lifecourse epidemiology, such as the early life critical period model, accumulation model, and pathway model. Is lifecourse epidemiology different than social epidemiology? Is all epidemiology lifecourse epidemiology because we study individuals at some point in their lifetime? Dr. Gilsanz answers these questions for us and also highlights the importance of using different data sources depending on your question of interest and the specific types of bias that are particularly prevalent in lifecourse epidemiology.
In this journal club episode, Dr. Matt Fox and Dr. Hailey Banack discuss a paper recently published in the New England Journal of Medicine by Dagan et al. on the Pfizer COVID-19 vaccine. Listen in for a real-world example of the concept of emulating a target trial and a discussion of how an epidemiologic study can be described as truly beautiful.
Join Matt Fox and Hailey Banack for our final episode of the first season of SERious Epidemiology, a season which happened to take place entirely during the COVID-19 pandemic. The pandemic has raised countless public health issues for us all to consider from virus testing to health disparities to safe classrooms to vaccine distribution. For the first time (maybe ever), nearly everyone knows what epidemiology is, and we are all hopefully done with having to explain that we are not a group of skin doctors (“we study epidemics… not the epidermis”). In this episode we discuss a few pandemic-related issues particularly relevant for epidemiologists, such as whether we’ll ever have to wear work pants again, the use pre-prints and the value of peer review, and issues related to confirmation bias.